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Abstract

Objective: Preoperative prediction of meningioma venous sinus invasion would

facilitate the selection of surgical approaches and predicting the prognosis. To

predict venous sinus invasion in meningiomas, we used radiomic signatures to

construct a model based on preoperative contrast-enhanced T1-weighted (T1C)

and T2-weighted (T2) magnetic resonance imaging. Methods: In total, 599

patients with pathologically confirmed meningioma were retrospectively

enrolled. For each patient enrolled in this study, 1595 radiomic signatures were

extracted from T1C and T2 image sequences. Pearson correlation analysis and

recursive feature elimination were used to select the most relevant signatures

extracted from different image sequences, and logistic regression algorithms

were used to build a radiomic model for risk prediction of meningioma sinus

invasion. Furthermore, a nomogram was built by incorporating clinical charac-

teristics and radiomic signatures, and a decision curve analysis was used to

evaluate the clinical utility of the nomogram. Results: Twenty radiomic signa-

tures that were significantly related to venous sinus invasion were screened

from 3190 radiomic signatures. Venous sinus invasion was associated with

tumor position, and the clinicoradiomic model that incorporated the above

characteristics (20 radiomic signatures and tumor position) had the best dis-

criminating ability. The areas under the curve for the training and validation

cohorts were 0.857 (95% confidence interval [CI], 0.824–0.890) and 0.824 (95%

CI, 0.752–0.8976), respectively. Interpretation: The clinicoradiomic model had

good predictive performance for venous sinus invasion in meningioma, which

can aid in devising surgical strategies and predicting prognosis.

Introduction

Meningiomas originate from cells of the arachnoid cap in

the brain and are the most commonly occurring benign

tumors of the brain and central nervous system (CNS),

constituting 37.6% of all brain tumors.1 Meningiomas

that form in the walls of the sinuses located on the dura

mater are known as para-sinus meningiomas. When the

growth of a para-sinus meningioma is limited by the

brain tissue or skull bone, it can easily invade the adja-

cent sinuses,2 resulting in complete or incomplete

obstruction of the venous sinuses. Preoperative prediction

of meningioma sinus invasion aids in surgical planning,

the choice of surgical approach for paraneoplastic menin-

gioma varies depending on the location of the tumor and

the degree of venous sinus invasion; for example, menin-

giomas that invade the anterior 1/3 of the superior sagit-

tal sinus (SSS), they can be removed together with the

meningioma, and postoperative reconstruction of the

superior sagittal sinus is not necessary; however, meningi-

omas that invade the middle and posterior 2/3 of the SSS

or other venous sinuses, the surgical approach is different

from the above and is closely related to the degree of

tumor invasion of the venous sinus. Neurosurgeons must
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balance the benefits and harms of radical resection and

preservation of veins.3 Yamashiro et al.4 pointed out that

the presence of diploic veins in patients with SSS invasion

should be noted to avoid interruptions during surgery,

because they can be used as a collateral venous pathway,

without SSS invasion, diploic veins, even those with high

blood flow, could be sacrificed. The surgical strategy cho-

sen may also vary for different types of sinus meningio-

mas and further determine the patient’s postoperative

treatment and prognosis.5 Although maximum safe resec-

tion is the main treatment modality for sinus meningio-

mas, many postoperative complications can still occur.6,7

The prognoses of venous sinus invasion and meningioma

are closely related; for example, extensive resection in the

sagittal region during sinus invasion of meningiomas

leads to impaired venous outflow and results in high dis-

ability and mortality rates.8 Moreover, SSS involvement

was significantly associated with a higher recurrence rate.9

Therefore, for sinus meningiomas, reducing the postoper-

ative recurrence rate and postoperative complications as

much as possible requires the selection of a sensible surgi-

cal plan. Therefore, preoperative accurate prediction of

meningioma venous sinus invasion may help in the for-

mulation of surgical plans, thus improving the total resec-

tion rate of paranasal meningioma. It may also improve

intraoperative protection of the brain tissue, reduce

intraoperative bleeding, and decrease the incidence of

postoperative neurological deficits, especially when the

tumor is located in a functional area. Ultimately, such

predictive ability may improve the prognosis and quality

of life of patients with meningioma.

The provisional diagnosis of meningioma is mainly

based on magnetic resonance imaging (MRI), which

shows the precise position and various extensions of

meningiomas.10 However, the disadvantage of MRI is that

it invites highly subjective judgment from radiologists,

and the final pathological diagnosis (e.g., histological clas-

sification, grading, and molecular analysis) is determined

only after surgically obtaining tumor tissue,11 which is

not conducive to preoperative surgical planning. Accurate

preoperative prediction of meningioma sinus invasion

helps the surgeon to develop an individualized treatment

plan (i.e., better selection of surgical techniques and

improved assessment patient prognosis), thereby improv-

ing the quality of life of patients. Currently, several imag-

ing techniques, such as digital subtraction angiography,

computed tomography venography, and MR venography,

are used to preoperatively assess the status of sinus inva-

sion. Digital subtraction angiography remains the gold

standard for cerebral arteriovenous visualization owing to

its superior spatial resolution and hemodynamic proper-

ties; however, it is not a commonly used for the assess-

ment of meningioma sinus invasion, it is invasive and

expensive and is mainly used for patients with large

tumor volume, rich blood supply, and those requiring

preoperative embolization therapy. When evaluating sinus

invasion, computed tomography venography may be

readily available, however, it requires injection of an

iodine contrast agent with a high radiation dose. A previ-

ous study compared the performance of 3D Fast Spin-

Echo T1 Black-Blood Imaging and contrast-enhanced MR

venography in predicting venous sinus invasion in

meningiomas.2 It focused on imaging techniques and

sometimes compromised the observation due to artifacts.

Sun et al.12 built a deep learning model to predict menin-

gioma sinus invasion has been reported, whereas the pre-

sent study focused more on image evaluation to develop

clinicoradiomic predictive models and validations. Thus,

there is an urgent need for a noninvasive and quantitative

method to predict meningioma sinus invasion.

Radiomics is characterized by the extraction of quanti-

tative imaging signatures or textures to interpret histopa-

thology and the creation of a high-dimensional dataset

based on the extracted signatures that transforms visual

image information into deeper quantitative signatures for

tumor heterogeneity assessment.13,14 The use of radiomic

signatures to predict brain invasion of meningiomas has

been reported, which may be potentially useful for preop-

erative prediction of venous sinus invasion.15 Therefore,

the present study aimed to develop a clinicoradiomic

model to predict meningioma sinus invasion by integrat-

ing radiomic and clinical features that would provide a

novel tool for the prediction of venous sinus invasion

based on contrast-enhanced T1- (T1C) and T2-weighted

(T2) MRI sequences. We combined the advantages of

radiomics methods by extracting imaging signatures that

are highly correlated with venous sinus invasion and built

a more efficient multi-parameter prediction model for

venous sinus invasion. Further, we validated the clinical

utility of the model via an external validation dataset, and

provided a new approach to investigate venous sinus

invasion in meningiomas.

Methods

Population

This was a retrospective study involving patients who

were pathologically diagnosed with meningioma and

underwent surgical resection. Between August 2015 and

April 2020, 602 patients from the Fifth Affiliated Hospital

of Zunyi Medical University were selected as the training

cohort. Between August 2016 and April 2020, 243 patients

from the Second Hospital of Lanzhou University were

selected as the external validation cohort. The diagnoses

of all the patients were pathologically confirmed, and the
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states of venous sinus invasion were marked within the

surgical records. The detailed surgical criteria are shown

in the Supplementary Materials. The intraoperative neu-

rosurgeon’s description was used for diagnosing the

venous sinus in this study.16 According to the degree of

sinus invasion, the meningiomas were classified into 3

types16: type I, Sindou I and II, in which the tumor

invades the wall of the venous sinus, the detailed criteria

for type I sinus invasion are described in the Supplemen-

tary Material; type II, Sindou III and IV, in which the

tumor grows into the venous sinus with limited narrow-

ing of the sinus lumen; and type III, Sindou V and VI, in

which the tumor grows into the venous sinus and the

sinus lumen is completely occluded. Types I-III were all

included in this study. The inclusion and exclusion cri-

teria are presented in Fig. 1. The inclusion criteria were

as follows: (a) pathologically confirmed meningioma with

clear pathological grading (including WHO grades 1, 2,

and 3 meningiomas); (b) MRI performed within one

week before surgery, including T1C and T2 sequences; (c)

good image quality and absence of artifacts; and (d) avail-

ability of complete clinical baseline information. The

exclusion criteria were as follows: (a) patients with a his-

tory of preoperative treatment, such as radiation therapy,

chemotherapy, or surgery; (b) patients who had not

undergone MRI scans, had incomplete MRI sequences, or

had poor MR image quality with artifacts; (c) surgical

records that did not document sinus involvement; and

(d) incomplete or unclear clinical baseline information.

After selection of study participants according to inclu-

sion and exclusion criteria, a total of 599 patients with

meningioma were enrolled in the study. The sample con-

sisted of 479 cases in the training cohort (220/

259 = positive/negative) and 120 cases in the validation

cohort (55/65 = positive/negative), who were evaluated by

surgeons for venous sinus invasion. The patient character-

istics are shown in Table 1. The surgical records described

the status of the tumor, including shape, blood supply,

relationship to surrounding tissues, and sinus invasion

status.

Ethical approval was obtained from the Fifth Affiliated

Hospital of Zunyi Medical University and the Second

Affiliated Hospital of Lanzhou University, and the

requirement of informed consent from the participants

was waived.

Image acquisitions, segmentation, and
standardization

MRI was performed using the 3.0-T (Siemens Verio; Sie-

mens Vide) and 1.5-T (Siemens Magnetom Aera; Siemens

Avanto Dot) scanners from the Second Hospital of Lan-

zhou University and Fifth Affiliated Hospital of Zunyi

Medical University, including T1C and T2 images. For

detailed parameters please consult the Supplementary

Material Table S1. All patients had complete MRI scans

(including T1C and T2 images). Manual layer-by-layer

delineation of meningioma regions on axial T1C and T2

image regions of interest (ROI) and volumes of interest

(VOI) were generated by fusing the segmented tissue of

each layer image. To provide a higher degree of objectiv-

ity for the manually segmented ROI, the radiologist was

unaware of each patient’s operative notes on pathological

diagnosis before segmentation. To ensure the accuracy

and validity of the results, two radiologists independently

and manually segmented the MRI images. In case of any

disagreement, a third radiologist with greater clinical

experience confirmed the segmentation. Conventional

MRI (T1C imaging) was used to determine the size, posi-

tion, and presence of tumor irregularities, necrotic/cystic

changes, and heterogeneous enhancement.

Indicators derived from images, such as radiomic signa-

tures, are sensitive to acquisition settings, reconstruction

algorithms, and image processing.12 To normalize and dis-

cretize image intensity, T1C and T2 images were processed

using z-score standardization, which enabled unification of

data standards and improved data comparability.

Feature extraction and selection

In this study, standardized radiomic signatures were

extracted from MR data using the PyRadiomics platform

(http://www.radiomics.io/pyradiomics.html),17 and radio-

mic signature extraction strictly followed the Image Bio-

marker Standardization Initiative guidelines.18 A total of

3190 radiomic signatures were derived from the MRI

images of each patient. The T1C signatures originating

from the ROI were outlined in the T1C image, and the

T2 signatures originating from the ROI were outlined in

the T2 image.

The T1C and T2 eigen matrices were normalized. First,

the mean and standard deviation of each eigenvector were

calculated. The value of each eigenvector was subtracted

from the mean value and divided by the standard devia-

tion. After the normalization process, the center and unit

standard deviation of each vector were zero. Due to the

high dimensionality of the extracted signature space, we

used Pearson Correlation Coefficient (PCC) to compare

the similarity of each signature pair. In case the PCC

value of the signature pair was larger than 0.9, we

removed one of the signatures. After this process, the

dimensions of the signature space were reduced, and each

radiomic signature was independent. Before constructing

the model, Recursive Feature Elimination (RFE) was used

to select the signatures. Primarily, multiple models were

built repeatedly, and each time the signatures with small
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correlation coefficients were selected and poor signatures

removed. This process was repeated iteratively for the

remaining signatures to obtain the smallest characteristic

set and selection of signatures based on the classifier.

Finally, the analysis of variance and Kruskal–Wallis test

were used to select radiomic signatures that were highly

correlated with venous sinus invasion (20 signatures in

total). Among them, 10 T1C signatures and 10 T2 signa-

tures were selected, including three first-order, three

shape-based, and 14 texture signatures. The radiomic

signatures associated with venous sinus invasion are dis-

played in Table 2. For example, the Neighborhood Gray-

tone Difference Matrix (NGTDM) signature in T1C

quantifies the sum of the differences between the gray

value of a voxel and the average gray intensity of its phase

voxels. The texture signature Gray-level Run-length

Matrix (GLRLM) in T1C describes the spatial distribution

information between neighboring voxels and the texture

signature Gray-level Size Zone Matrix (GLSZM) in T2 is

based on the basic principle of GLRLM to measure the

distance of different voxels in the defined region. The two

texture signatures complement each other to describe the

spatial distribution information of pixels/voxels.14 The

correlation between these signatures shows that both sets

of signatures maintained a high degree of similarity and

stability in the training and validation cohorts.

For the selection of clinical risk factors, the correlation

between clinical factors and meningioma sinus invasion

was tested using the chi-square and Mann–Whitney U

tests, with p-value thresholds set at 0.05. Further, signa-

tures with p-values over 0.5 were excluded from the

model. The chi-squared test was used to compare differ-

ences in sex, WHO grading, and tumor position. The

WHO grading was a postoperative factor that was

excluded from the model. The Mann–Whitney U test was

used to compare differences in age (Fig. 2).

Radiomic model building

A radiomic model was created using support vector

machine (SVM) and logistic regression (LR) algorithms

to predict the risk of meningioma sinus invasion. The

Figure 1. Inclusion and exclusion criteria.
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radiomic model was based on the T1C and T2 fusion sig-

natures, which performed at the image output level (10

T1C and 10 T2 signatures), while the T1C and T2 models

were developed based on the T1C and T2 signatures,

respectively. We used five-fold cross-validation on the

training data set to select hyper-parameters (for example,

the number of signatures) of the model. The hyper-

parameters were set according to the model performance

(maximum area under the curve [AUC] obtained from

receiver operating characteristic [ROC] analysis on the

validation dataset). The calibration curves of the four

models were used to compare the predictive power of the

models to select the best model (Fig. 3B,C).

Establishing and validating nomogram
based on radiomic characteristics and
clinical risk factors

After analyzing the patients’ clinical features, we found a

significant correlation between the tumor position and

meningioma sinus invasion (p = 0.002 in the training

cohort and p < 0.001 in the validation cohort).

An SVM algorithm was used to build a model based

on T1C radiomic signatures, a model based on T2 signa-

tures, and a model based on fused T1C and T2 signatures

for risk prediction of meningioma sinus invasion. The

models were compared and analyzed for their ability to

Table 1. Clinical characteristics of patients in the training and validation cohorts.

Characteristics

Training cohort

p-value

Validation cohort

p-valuePositive (n = 220) Negative (n = 259) Positive (n = 55) Negative (n = 65)

Sex 0.740 0.360

Male 54 (24.55%) 67 (25.87%) 13 (23.64%) 11 (16.92%)

Female 166 (75.45%) 192 (74.13%) 42 (76.36%) 54 (83.08%)

Age (years, mean � SD) 51.2 � 10.89 51.34 � 10.95 0.977 50.82 � 9.58 51.52 � 9.03 0.571

Grade 0.967 0.905

Grade1 211 (95.91%) 248 (95.75%) 54 (98.18%) 64 (98.46%)

Grade2 8 (3.63%) 10 (3.86%) 1 (1.82%) 1 (1.54%)

Grade3 1 (0.46%) 1 (0.39%) 0 0

Tumor position 0.002 <0.001

Parasagittal sinus 155 (70.45%) 182 (70.27%) 45 (81.82%) 40 (61.54%)

Transverse sinus 31 (14.09%) 15 (5.79%) 5 (9.09%) 1 (1.54%)

Sigmoid sinus 34 (15.46%) 62 (23.94%) 5 (9.09%) 24 (36.92%)

The chi-square test was used to compare the difference in gender, WHO grade and tumor position, while the Mann–Whitney U test was used to

compare the difference in age.

SD, standard deviation.

T1C T2

t1c_log-sigma-1-mm-3D_ngtdm_Contrast t2_exponential_firstorder_Minimum

t1c_wavelet-HLH_firstorder_Mean t2_original_shape_Sphericity

t1c_logarithm_glcm_Imc2 t2_square_gldm_DependenceVariance

t1c_wavelet-HLH_glcm_MCC t2_wavelet-LLL_glszm_SmallAreaEmphasis

t1c_original_shape_Sphericity t2_lbp-3D-m1_firstorder_RootMeanSquared

t1c_wavelet-

LLH_glrlm_LongRunHighGrayLevelEmphasis

t2_wavelet-HHL_glcm_SumSquares

t1c_original_shape_Maximum3DDiameter t2_log-sigma-1-mm-

3D_glszm_SmallAreaEmphasis

t1c_exponential_glrlm_RunVariance t2_log-sigma-1-mm-

3D_glszm_LowGrayLevelZoneEmphasis

t1c_lbp-3D-m1_glrlm_RunVariance t2_wavelet-HHH_glszm_ZoneEntropy

t1c_wavelet-

HLL_glszm_GrayLevelNonUniformityNormalized

t2_wavelet-

LHL_glszm_SizeZoneNonUniformityNormalized

T1C, Contrast-enhanced T1-weighted magnetic resonance imaging signatures; T2, T2-weighted

magnetic resonance imaging signatures.

Table 2. Radiomics features extracted

from T1C and T2 that were significantly

relevant with sinus invasion.
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discriminate between different models in terms of the risk

of venous sinus invasion. Integrated discrimination

improvement (IDI) and the DeLong test were used to

select the best model. Further, IDI was conducted to

quantify the performance improvement and reflect the

overall improvement of the model, and a p-value < 0.05

indicated a statistically significant improvement in reclas-

sification by comparing the T1C and T2 the models

alone. Notably, the inclusion of T1C and T2 signatures

improved the predictive performance of the model. After

comparing the models, the best one was selected to

develop the nomogram19 that was created using the train-

ing cohort, and included radiomic signatures and clinical

risk factors. It elaborated the relationship between signa-

tures and meningioma sinus invasion, which was vali-

dated on an external validation set.

Statistical analysis

Python (version 3.7.6) and R (version 4.1.1; The R Foun-

dation for Statistical Computing, Vienna, Austria) were

used for all statistical analyses. Subtype variables including

Figure 2. Comparison of the receiver operating characteristic (ROC) curves of different models. Comparison of the receiver operating

characteristic (ROC) curves of different models. ROC curves of the different models in the training (A) and validation (B) cohort. The

clinicoradiomic model demonstrated the best discriminating ability among these models, with an AUC of 0.857 in the training cohort and an

AUC of 0.824 in the validation cohort.

ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 1289

L. Wang et al. Radiomics can predict meningioma sinus invasion



sex, WHO grading, and tumor position were statistically

analyzed using chi-square tests in the training and valida-

tion cohort. The Mann–Whitney U test was used for sta-

tistical analysis of continuous variables, and statistical

descriptions are presented as mean � standard deviation.

Generally, two-sided p-values < 0.05 were considered sta-

tistically significant.

Results

Clinical characteristics of patients with
meningioma

In total, 599 patients were included in this study. We

selected 479 cases in the training cohort and 120 cases in

the external independent validation cohort. Table 1 shows

the clinical characteristics of the patients. Four clinical

variables were collected in our study, including age, sex,

tumor position, and WHO grading. For clinical character-

istics, tumor position differed significantly (p = 0.002 in

the training cohort and p < 0.001 in the validation

cohort) between patients with and without meningioma

sinus invasion. Sex, WHO grading, and age were not sig-

nificantly different in the two groups (p > 0.05).

Fusion of modalities

Overall, 1595 radiomic signatures were extracted from

T1C and T2 sequences, respectively. Since MRI-derived

signatures have a high dimensionality, we compared the

similarity of each signature pair using PCC to reduce the

dimension. We selected highly relevant and mutually

independent radiomic signatures of meningioma sinus

invasion using recursive feature elimination. In total, 20

of the 3190 radiomic signatures that were significantly

related to meningioma sinus invasion were selected. The

analysis showed that the tumor position differed signifi-

cantly between patients with and without venous sinus

invasion. Signatures with a p-value > 0.05 and postopera-

tive factors (WHO grading) were excluded from the

model. Thus, radiomic signatures and tumor positions

were selected for the clinicoradiomic model building; the

model was visualized and the nomogram was established

in this study, which is shown in Fig. 3A.

After model combination, the clinicoradiomic model

obtained by fusing the tumor position, three first-order

signatures, three shape-based signatures, and 14 texture

signatures had the best predictive ability. The AUC values

of the clinicoradiomic predictive models were 0.857 (95%

CI, 0.824–0.890) and 0.824 (95% CI, 0.752–0.897) for

sinus invasion prediction in the training and validation

cohorts, respectively. Sensitivity and specificity were

81.82% and 69.23%, respectively (Table 3).

Model comparisons

The DeLong test was used to assess the significance of the

AUC values of the ROC curves, with a p-value < 0.05

indicating a statistically significant AUC value for the

comparison models. The clinicoradiomic model showed

the best predictive performance in the training and vali-

dation cohorts. The AUC value for the training and vali-

dation cohorts was 0.857 (95% CI, 0.824–0.890) and

0.824 (95% CI, 0.752–0.897), respectively (Table 4), and

sensitivity and specificity were 81.82% and 69.23%,

respectively, in the validation cohort.

An IDI20 metric was used to evaluate the incremental

predictive ability of different prognostic models. The clin-

icoradiomic model improved by 1.57% (p = 0.001) and

0.43% (p = 0.645) as compared to the radiomic model in

the training and validation cohorts, respectively. Compar-

isons between different models are shown in Table 5.

Clinicoradiomic nomogram performance

In addition to using AUC for quantifying the discrimina-

tion, calibration curves were applied to assess the predic-

tive ability of the four models (Fig. 3B,C) and determine

the fit superiority of the models. The result identified the

best performing clinicoradiomic model and defined the

radiomic nomogram. The decision curve analysis (DCA)

was used to quantify the net benefit at different threshold

probabilities in this study,21 the clinicoradiomic model

had the highest value of use when the threshold value was

0.2 to 0.8. Accordingly, the nomogram was assessed for

clinical validity. The decision curves for the four models

are shown in Fig. 3D.

Discussion

The present study used MRI and large-scale data to predict

the risk of venous sinus invasion in meningiomas using a

clinicoradiomic model. The performance of this model was

validated using discrimination, sensitivity, specificity, cali-

bration curves, and DCA. A fused radiomic model showed

a beneficial predictive performance in the training (AUC:

0.854) and validation (AUC: 0.820) cohorts. The nomo-

gram, based on radiomic signatures and tumor position

information, showed the best predictive performance. Fur-

ther, the AUC values of the clinicoradiomic model were

0.857 and 0.824 in the training and validation cohorts,

respectively. Sensitivity and specificity were 81.82% and

69.23%, respectively. These findings imply that clinicora-

diomic models can be used to preoperatively identify

venous sinus invasion in meningioma patients. Thus, this

study provides a noninvasive and convenient alternative for

clinicians to evaluate patients with venous sinus invasion.
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Tumor position differed significantly (p = 0.02 in the

training cohort and p < 0.001 in the validation cohort)

between positive and negative patients. The tumor posi-

tion was identified as a significant factor for venous

sinus invasion. Further, meningiomas invading the para-

sagittal sinus were present in 76.36% and 54.55% of

the patients in the training and validation cohorts,

respectively, which was consistent with the finding of
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other reports (42.9%–85.71%),22,23 this may demon-

strate that parasagittal sinus meningiomas are more

prone to venous sinus invasion, as these lesions are

located near the SSS and there is no brain parenchyma

between the meningioma and the SSS. As reported by

Mantovani and Mohammed et al., the parasagittal

meningioma subgroup accounts for 19.5%–45% of all

intracranial meningiomas.24,25 Further, parasagittal and

Model AUC (95% CI)

ACC

(%)

SPE

(%)

SEN

(%) NPV PPV

T1C 0.776 (0.694–0.857) 71.67 67.69 76.36 0.772 0.667

T2 0.734 (0.644–0.824) 70.00 69.23 70.91 0.738 0.661

Combination of T1C and

T2

0.820 (0.747–0.894) 75.00 75.38 74.55 0.778 0.719

Clinicoradiomic 0.824 (0.752–0.897) 75.00 69.23 81.82 0.818 0.692

ACC, balanced accuracy; AUC, area under receiver operating characteristic curve; Clinicoradiomic,

fusion of radiomic signatures and tumor position; NPV, negative predictive value; PPV, positive pre-

dictive value; SEN, sensitivity; SPE, specificity; T1C, contrast-enhanced T1-weighted imaging features;

T2, T2-weighted imaging features; T1C+T2, combination of T1C and T2 features.

Table 3. Performance of models for sinus

invasion prediction in the validation

cohort.

Table 4. Performance of models for sinus invasion prediction (AUC) in the training cohort and validation cohort.

Cohort Model AUC (95% AUC CI) New model AUC (95% AUC CI)

DeLong test

(p-Value)

Training cohort T1C1 0.827 (0.791–0.863) Combination of T1C and T23 0.854 (0.820–0.887) p13 = 0.063

T22 0.816 (0.778–0.855) Combination of T1C and T23 0.854 (0.820–0.887) p23 = 0.018

Combination of T1C and T23 0.854 (0.820–0.887) Clinicoradiomic4 0.857 (0.824–0.890) p34 = 0.237

Validation cohort T1C1 0.776 (0.694–0.857) Combination of T1C and T23 0.820 (0.747–0.894) p13 = 0.255

T22 0.734 (0.644–0.824) Combination of T1C and T23 0.820 (0.747–0.894) p23 = 0.028

Combination of T1C and T23 0.820 (0.747–0.894) Clinicoradiomic4 0.824 (0.752–0.897) p34 = 0.3

Figure 3. The Nomogram development and validation. The Nomogram development and validation. (A) Radiomic nomogram for predicting sinus

status of meningiomas. The radiomics nomogram was developed in the training cohort, with the radiomic signatures and clinical signature (tumor

position). (B) Calibration curve for the four models in the training cohort. (C) Calibration curve for the four models in the validation cohort. The x-

axis represents the probability of sinus invasion measured using the four models, and the y-axis represents the actual rate of sinus invasion. The

solid line represents the discrimination ability of the nomogram, while the diagonal dotted line represents an ideal evaluation by a perfect model.

The closer the solid line and the dotted line are proposed to fit, the better the prediction accuracy of the nomogram. The calibration curve shows

the calibration of a consistent column line plot between the predicted risk of sinus invasion status and pathological findings. (D) Decision curve

analysis for the T1C, T2, fusion model, and clinicoradiomic model. The x-axis shows the threshold probability, and the y-axis measures the net

benefit. The gray line represents all patients with sinus invasion, while the black line represents all patients without sinus invasion. The purple line

represents the clinicoradiomic model.

Table 5. Comparison between different models in the training and validation cohort (IDI).

Cohort Model New model IDI p-Value

Training cohort Combination of T1C and T2 Clinicoradiomic 1.57% p = 0.001

T1C Combination of T1C and T2 5.33% p = 0.001

T2 Combination of T1C and T2 10.56% p < 0.000

Validation cohort Combination of T1C and T2 Clinicoradiomic 0.43% p = 0.645

T1C Combination of T1C and T2 6.39% p = 0.120

T2 Combination of T1C and T2 14.87% p = 0.000

IDI, integrated discriminant improvement.
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falcine meningiomas are the second most frequently

occurring intracranial meningiomas.6

Some studies have reported prediction of grading, dif-

ferential diagnosis, and prognosis of meningiomas using

radiomic signatures (e.g., T1C, T2, DWI, T1WI, T1C, and

ADC mapping).8,26–28 Hence, we explored the radiomic

signatures associated with meningioma sinus invasion.

The model based on 20 signatures had the highest AUC

for the training and validation cohorts. Most signatures

were texture signatures of the image (14/20), which can

describe tumor microstructures that are not easily identi-

fied visually, such as cellularity, heterogeneity, and peritu-

mor edema and may be associated with tumor

aggressiveness.27,29,30 For example, NGTDM may describe

tumor heterogeneity with key signatures including coarse-

ness, busyness, and complexity, with roughness describing

the spatial rate of change of gray values and busyness

describing the rapid rate of change of gray values.14 Previ-

ous studies have reported that these imaging signatures

are highly correlated with brain and bone invasion in

meningiomas.15,31 In addition, GLSZM and GLRLM—
two signatures that are highly relevant in brain and bone

invasion—may describe the spatial distribution of cells.

Notably, GLSZM was the most relevant for bone

invasion.29 These correlated signatures may reveal some

microscopic connections between the brain, sinus, and

bone invasion that are otherwise difficult to recognize

visually. The first-order signatures describe the distribu-

tion of voxel intensities within the MRI images. Shape-

based signatures describe the grayscale intensity distribu-

tion in the ROI, encompassing the size and shape of the

tumor region. All these imaging histological signatures are

associated with cellular heterogeneity and may expose the

nature of tissue invasion around meningiomas. Therefore,

radiomic signatures can be used as a noninvasive method

to predict preoperative meningioma sinus invasion.

A recent study used deep learning to automatically seg-

ment contoured clinical target volumes,32 quantitatively

translate tumor expression at the microphysical level, and

realize tumor heterogeneity visualization. In another study,

we built a deep-learning radiomics analysis model to iden-

tify venous sinus invasion.12 It is also important to assess

peri-meningioma tissue invasion.15 In the present study,

LR and SVM algorithms were used to build a clinicoradio-

mic model for the risk prediction of meningioma sinus

invasion. The results showed that the combined clinicora-

diomic model demonstrated a desirable performance in

predicting meningioma sinus invasion by evaluating the

model’s discrimination, calibration, and clinical utility. A

nomogram—a visualization mode of LR—incorporating

radiomic signatures and clinical risk factors was established,

which transformed complex regression equations into

visual graphics, making the results of the model more

readable, intuitive, and understandable. Nomograms not

only have a good predictive power but are also non-

invasive methods that facilitate clinicians in assessing

patients and developing surgical strategies preoperatively.

The current research demonstrates a significant association

of signatures with meningioma sinus invasion, including

first-order signatures, shape heterogeneity, texture signa-

tures, and tumor position. Further, the constructed nomo-

gram can be used as a non-invasive, convenient, and

quantitative method for preoperative prediction of venous

sinus invasion in patients with meningioma.

The present study had some limitations. First, this was

a retrospective study, the criterion for sinus invasion of

meningiomas in this study was obtained by intraoperative

assessment by the surgeons, which was subjective, espe-

cially type I, and there may be false positives or negative,

leading to biased results. Second, ROIs were manually

delineated by radiologists, which can be highly time- and

energy-consuming. Third, in this study, satisfactory inde-

pendent validation results were obtained, but in future

studies, the model could be trained internally and exter-

nally in multiple centers to improve its repeatability,

robustness, and generalization ability. Ultimately, T1C

and T2 sequence images were selected to extract radiomic

signatures, and some of the T2 boundaries were blurred

and may have been biased even though they were out-

lined with reference to the T1C image.

Conclusions

Based on manually extracted radiomic signatures, menin-

gioma venous sinus invasion was significantly correlated

with the constructed radiomic labels. The clinicoradiomic

model constructed in this study had a beneficial predic-

tive performance for meningioma sinus invasion, pro-

vided validity to the model, and showed good predictive

and generalization abilities. Clinicoradiomic models may

be a potentially useful and actionable tool for predicting

sinus invasion in meningiomas.
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